DESCRIPTION
Nuclear engineering majors study radioactive materials and nuclear science and learn how to use them in areas such as power, nuclear medicine, and industry. Students acquire a strong interdisciplinary foundation in science-based engineering - classes cover the ground of such disparate fields as physics, materials science, and political science. As a part of this interdisciplinary education, students also engage with the larger societal impacts that nuclear engineering has produced. Students will develop the skills and knowledge for a broad range of careers, from practical engineering work in the energy industries to graduate research and education, entrepreneurship, law, medicine, and business.

SKILLS
Analytical and quantitative reasoning
Knowledge of relevant laws and regulations
Strong interpersonal and communication skills
Interpret and write technical documentation

POSSIBLE FUTURE POSITIONS
- **Nuclear engineer**: Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. Many find industrial and medical uses for radioactive materials—for example, in equipment used in medical diagnosis and treatment.
- **Energy consultant**: Design and evaluate projects and programs to reduce energy costs or improve energy efficiency during the design, building, or remodeling stages of construction.

CAREER INDUSTRY EXAMPLES
- Engineering services
- Manufacturing
- Research
- Government
- Electric power generation
- Health and safety

SAMPLE EMPLOYERS
- PowerAdvocate
- U.S. Navy
- Naval Nuclear Laboratory
- IDA
- Oklo
- Bechtel Corporation
- MITRE
- NextEra Energy, Inc.
- NPG Van
NUCLEAR ENGINEERING
COURSE 22

INSIDE COURSE 22

22 Nuclear Engineering Undergraduates: 17

DEPARTMENT FAVORITES

22.01 Introduction to Nuclear Engineering and Ionizing Radiation
Provides an introduction to nuclear science and its engineering applications.
Describes basic nuclear models, radioactivity, nuclear reactions and kinematics.
Covers the interaction of ionizing radiation with matter, with an emphasis on
radiation detection, radiation shielding, and radiation effects on human health.
Presents energy systems based on fission and fusion nuclear reactions, as well as
industrial and medical applications of nuclear science.

22.033 Nuclear Systems Design Project
Group design project involving integration of nuclear physics, particle transport,
control, heat transfer, safety, instrumentation, materials, environmental impact, and
economic optimization. Provides opportunity to synthesize knowledge acquired in
nuclear and non-nuclear subjects and apply this knowledge to practical problems of
current interest in nuclear applications design.

22.04 Social Problems of Nuclear Energy
Surveys the major social challenges for nuclear energy. Topics include the ability of
nuclear power to help mitigate climate change; challenges associated with ensuring
nuclear safety; the effects of nuclear accidents; the management of nuclear waste;
the linkages between nuclear power and nuclear weapons, the consequences of
nuclear war; and political challenges to the safe and economic regulation of the
nuclear industry.

COURSE 22-FRIENDLY LABS

MIT Nuclear Reactor Laboratory
Center for Advanced Nuclear Energy Systems
Mesoscale Nuclear Materials Lab (Short Lab)
Plasma Science and Fusion Center
H. H. Uhlig Corrosion Laboratory

GET INVOLVED WITH COURSE 22 (INCLUDING AT MIT!)
American Nuclear Society

UPOP is here to help you! Come talk to us in 1-123 or email us at upopstudentprogram@mit.edu