CONTACT
Barry Johnston, bsjohnst@mit.edu
Sharece Corner, scorner@mit.edu

DESCRIPTION
Chemical engineers build a bridge between science and manufacturing, applying the principles of chemistry and engineering to solve problems involving the production or use of chemicals. They design equipment and develop processes for large-scale chemical manufacturing, plan and test methods of manufacturing products and treating byproducts, and supervise production. Applications of chemical engineering extend to a variety of specific areas, including energy and the environment, nanotechnology, polymers and colloids, surface science, catalysis and reaction engineering, systems and process design, and biotechnology.

INSIDE COURSE 10
10 Chemical Engineering
10-B Chemical-Biological Engineering
10-C Chemical Engineering w/ focus in another field
10-ENG S.B. in Engineering as recommended by the Department of Chemical Engineering

INTRODUCTORY CLASSES
10.000 Engineering Molecular Marvels: Careers and ChemE at MIT
Exposes students to the ways in which chemical technologies have profoundly altered the course of history. Discusses the next century’s great challenges, such as curing cancer and supplying the planet’s surging demand for clean water, food, and energy, sustainably. Provides an overview of how ChemE students apply fundamental engineering principles and leverage technology, from molecules to systems, in the pursuit of practical solutions for these problems and more.

10.00 Molecule Builders
Project-based introduction to the applications of engineering design at the molecular level. Working in teams, students complete an open-ended design project that focuses on a topic such as reactor or biomolecular engineering, chemical process design, materials and polymers, or energy. Provides students practical exposure to the field of chemical engineering as well as potential opportunities to continue their project designs in national/international competitions.
Introduction to Chemical Engineering
Explores the diverse applications of chemical engineering through example problems designed to build computer skills and familiarity with the elements of engineering design. Solutions require application of fundamental concepts of mass and energy conservation to batch and continuous systems involving chemical and biological processes.

COURSE 10-FRIENDLY UROP AREAS
Broad Institute (BR)
Koch Institute for Integrative Cancer Research
Health Sciences and Technology (HST)
MIT Energy Initiative (EI)

GET INVOLVED WITH COURSE 10
American Institute for Chemical Engineers (AIChE)
Undergraduate Student Advisory Board (USAB)
National Organization of Black Chemists and Chemical Engineering (NOBCChE)

SKILLS
Knowledge of fundamental engineering principles
Strong time and project management
Commercial and business awareness
Resource management

POSSIBLE FUTURE POSITIONS
- **Chemical engineer**: Design chemical plant equipment and devise processes for manufacturing chemicals and products through applying principles and technology of chemistry, physics, and engineering.
- **Operations and manufacturing engineer**: Design, integrate, or improve manufacturing systems and related processes. Ensure that a plant produces the correct amount of product to the correct specification.
- **Process engineer**: Design, implement, control, and optimize industrial processes—such as chemical, food, pharmaceutical etc.

CAREER INDUSTRY EXAMPLES
Agricultural engineering Materials science Petroleum
Biomedical Nanotechnology Process engineering
Manufacturing Nuclear engineering Agricultural engineering

SAMPLE EMPLOYERS
Amgen Chevron Lockheed Martin
Athenahealth Clearview Healthcare Mars & Company
Black Rock Chemicals Clorox Oracle
Bloom Energy Corp. L’Oreal Pioneer Natural Resources